2.5 Continuity

In this section we will discuss the definition of continuity and introduce one of the most important theorems of Mathematics: The Intermediate Value Theorem (IVT).

Functions that have a limit found by calculating the value of the function at \boldsymbol{a} are said to be continuous at a.

Definition: A function \boldsymbol{f} is continuous at a number \boldsymbol{a} if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Notice that this definition requires three things for f to be continuous a :

1. $\mathrm{f}(\mathrm{a})$ is defined (that means $\mathrm{f}(\mathrm{a})$ exists)
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Example: $f(x)=\frac{x^{2}-9}{x-3} \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=3$ because 3 is not in the domain of f. Also notice that $f(3)=$ undefined

If \boldsymbol{f} is defined near \boldsymbol{a}, we say that \boldsymbol{f} is discontinuous at \boldsymbol{a} if f is not continuous at \boldsymbol{a}.

Geometrically, you can think of a function that is continuous at every number in an interval as function whose graph has no break in it: the the graph can be drawn without removing your pen/pencil from the paper.

Example: Where is the function discontinuous? $f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right\}$
Graph this function: The function is discontinuous at $\mathrm{x}=0$ because $\lim _{x \rightarrow 0} f(x) \neq f(0)$.

Definition: A function f is continuous from the right at a number \boldsymbol{a} if $\lim _{x \rightarrow a^{+}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{a})$

Example: $f(x)=\left\{\begin{array}{ll}\tan (x) & \text { if } x \leq 0 \\ 1 & \text { if } x>0\end{array}\right\}$
Graph this function:

This function is continuous from the left at $x=0$ because $\lim _{x \rightarrow 0^{-}} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\mathbf{0})$

But it is discontinuous from the right because $\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$

Definition: A function f is continuous on an interval if it is continuous at every number in the interval.

Theorem: If \boldsymbol{f} and \boldsymbol{g} are continuous at \boldsymbol{a} and \boldsymbol{c} is a constant, then the following functions are also continuous at a :

1. $f+g$
2. $f-g$
3. $\boldsymbol{c} \cdot \boldsymbol{f}$
4. $f \cdot g$
5. $\frac{f}{g}$ if $g(a) \neq 0$

Theorem: a) All polynomials are continuous everywhere; that is, they are continuous on $(-\infty, \infty)$. b) A rational function is continuous wherever it is defined; that is, it is continuous on its domain.

Theorem: The following types of functions are continuous at every number in their domain.

- Polynomials
- Rational functions
- Root functions
- Exponential functions
- Logarithmic functions
- Trigonometric functions
- Inverse Trigonometric functions

Example: Where is the function $f(t)=\frac{e^{t}+\sin (t)}{2+\cos (\pi t)}$ continuous? First let's analyze each part of this function for continuity, then make a conclusion.

- $\sin (t)$ is continuous everywhere $(-\infty, \infty)$ because it is a trigonometric function
- e^{t} is continuous everywhere $(-\infty, \infty)$ because it is an exponential function.
- notice that 2 and $\cos (\pi t)$ are continuous everywhere therfore their sum is also continuous
- since $\cos (\pi t) \geq-1$ for all t in it's domain, then $2+\cos (\pi t)>0$ for all t
- thus, $f(t)$ is continuous everywhere on its domain.

Theorem: If \boldsymbol{g} is continuous at \boldsymbol{a} and \boldsymbol{f} is continuous at $g(a)$, then the composite function $\boldsymbol{f o g}$ given by $(f \circ g)=f(g(x))$ is continuous at a.

Example: Where is the function $f(t)=\arcsin (1+2 t)$ continuous?

Let $h(t)=\arcsin (t)$ and $g(t)=1+2 t$ then $f(t)=h(g(t))$. We know that $g(t)$ is continuous everywhere because it is a polynomial. We also know that $h(t)$ is continuous on it domain which is [1, -1]. So as long as $-1 \leq g(t) \leq 1$, then $f(t)$ is continuous.

$$
\begin{aligned}
& -1 \leq 1+2 t \leq 1 \quad \text { solve for } \mathrm{t} \\
& -2 \leq 2 t \leq 0 \\
& -1 \leq t \leq 0
\end{aligned}
$$

Therefore, $f(t)$ is continuous on $[-1,0]$.

The Intermediate Value Theorem: Suppose \boldsymbol{f} is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number, c, such that $f(c)=N$.

This theorem says that the graph must cross a horizontal line $y=N$, where $\mathrm{f}(\mathrm{a})<\mathrm{N}<\mathrm{f}(\mathrm{b})$, in the closed interval [a, b] if fis continuous. Notice that the function must be continuous for the IVT to work. Also the function can cross $y=N$ more than once.

Graphically:

The graph of the function $f(x)=x^{3}-11 x+32$

Example: Use the IVT to show that there is a root of the function in the specified interval.
$\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})=x^{2}-\boldsymbol{x},(\mathbf{1}, 2)$, Notice that $\sin (x), x^{2}$, and x are continuous $\therefore \sin (x)=x^{2}-x$ is continuous.
$\sin (x)=x^{2}-x$
$\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})-\boldsymbol{x}^{2}+\boldsymbol{x}=\mathbf{0}$. So we need to find a number, c, between 1 and 2 such that $f(c)=0$
If we let $a=1, b=2$ and $N=0$, then we have the following:
$f(1)=\sin (1)-1^{2}+1 \approx .84147-1+1 \approx .84147>0$
$f(2)=\sin (2)-2^{2}+2 \approx .904297-4+2 \approx-1.0907<0$

Thus $f(2)<0<f(1)$; which means that $N=0$ is a number between $f(1)$ and $f(2)$. Since $\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})=x^{2}-x$ is continuous, the IVT says that there is a number \boldsymbol{c} between $\mathrm{x}=1$ and $\mathrm{x}=2$ such that $f(c)=0$. Which means that the equations $\boldsymbol{\operatorname { s i n }}(x)=x^{2}-x=0$ has at least one root (solution or zero) in the interval (1,2).

